config_MNE_BUR3.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. # most time series are contained twice and 2005 data is also contained twice. Some
  2. # data is inconsistent and we remove the time series with errors
  3. drop_data = {
  4. 2: { # individual sector time series are (mostly) wrong, leave only 0.EL timeseries
  5. "cats": ["1", "1.A", "1.A.1", "1.A.1", "1.A.2", "1.A.3", "1.A.4", "1.A.5", "1.B", "1.B.1", "1.B.2",
  6. "2", "2.A", "2.B", "2.C", "2.D", "2.E", "2.F", "2.G", "2.H",
  7. "3", "3.A", "3.B"],
  8. #"years": ["2005"], # 2005 data copy of 2019
  9. },
  10. 3: { # individual sector time series are (mostly) wrong, leave only 0.EL timeseries
  11. "cats": ["3.C", "3.D", "3.E", "3.F", "3.G", "5", "5.A", "5.B", "5.C", "5.D", "6"]
  12. #"years": ["2005"],
  13. },
  14. 6: { #2005 data copy of 2019
  15. "years": ["2005"],
  16. },
  17. 7: { # 2005 data copy of 2019 for 3.G
  18. "years": ["2005"],
  19. },
  20. 25: { # 2005 data copy of 2019 (CO2, 2005-2019, first table)
  21. "years": ["2005"],
  22. },
  23. 26: { # 2005 data copy of 2019 (CO2, 2005-2019, second table)
  24. "years": ["2005"],
  25. },
  26. }
  27. cat_mapping = {
  28. '3': 'M.AG',
  29. '3.A': '3.A.1',
  30. '3.B': '3.A.2',
  31. '3.C': '3.C.7', # rice
  32. '3.D': 'M.3.C.45AG', # Agricultural soils
  33. '3.E': '3.C.1.c', # prescribed burning of savanna
  34. '3.F': '3.C.1.b', # field burning of agricultural residues
  35. '3.G': '3.C.3', # urea application
  36. '4': 'M.LULUCF',
  37. '4.A': '3.B.1', # forest
  38. '4.B': '3.B.2', # cropland
  39. '4.C': '3.B.3', # grassland
  40. '4.D': '3.B.4', # wetland
  41. '4.E': '3.B.5', # Settlements
  42. '4.F': '3.B.6', # other land
  43. '4.G': '3.D.1', # HWP
  44. '5': '4',
  45. '5.A': '4.A',
  46. '5.B': '4.B',
  47. '5.C': '4.C',
  48. '5.D': '4.D',
  49. '6': '5',
  50. }
  51. aggregate_cats = {
  52. '3.A': {'sources': ['3.A.1', '3.A.2'], 'name': 'Livestock'},
  53. '3.B': {'sources': ['3.B.1', '3.B.2', '3.B.3', '3.B.4', '3.B.5', '3.B.6'], 'name': 'Land'},
  54. 'M.3.C.1.AG': {'sources': ['3.C.1.c', '3.C.1.b'], 'name': 'Emissions from Biomass '
  55. 'Burning (Agriculture)'},
  56. '3.C.1': {'sources': ['3.C.1.c', '3.C.1.b'], 'name': 'Emissions from Biomass Burning'},
  57. '3.C': {'sources': ['3.C.1', '3.C.3', 'M.3.C.45AG', '3.C.7'],
  58. 'name': 'Aggregate sources and non-CO2 emissions sources on land'},
  59. 'M.3.C.AG': {'sources': ['3.C.1.AG', '3.C.3', 'M.3.C.45AG', '3.C.7'],
  60. 'name': 'Aggregate sources and non-CO2 emissions sources on land (Agriculture)'},
  61. '3.D': {'sources': ['3.D.1'], 'name': 'Other'},
  62. '3': {'sources': ['M.AG', 'M.LULUCF'], 'name': 'AFOLU'},
  63. 'M.AG.ELV': {'sources': ['M.3.C.AG'], 'name': 'Agriculture excluding livestock emissions'},
  64. '0': {'sources': ['1', '2', '3', '4', '5']},
  65. }