|
@@ -10,7 +10,13 @@ import sys
|
|
|
|
|
|
import pandas as pd
|
|
import pandas as pd
|
|
import primap2 as pm2
|
|
import primap2 as pm2
|
|
-from config_JPN_INV2024 import (
|
|
|
|
|
|
+
|
|
|
|
+from unfccc_ghg_data.helper import (
|
|
|
|
+ downloaded_data_path,
|
|
|
|
+ extracted_data_path,
|
|
|
|
+ process_data_for_country,
|
|
|
|
+)
|
|
|
|
+from unfccc_ghg_data.unfccc_reader.Japan.config_jpn_inv2024 import (
|
|
basket_copy,
|
|
basket_copy,
|
|
cat_conversion,
|
|
cat_conversion,
|
|
coords_cols,
|
|
coords_cols,
|
|
@@ -25,167 +31,163 @@ from config_JPN_INV2024 import (
|
|
time_format,
|
|
time_format,
|
|
)
|
|
)
|
|
|
|
|
|
-from unfccc_ghg_data.helper import (
|
|
|
|
- downloaded_data_path,
|
|
|
|
- extracted_data_path,
|
|
|
|
- process_data_for_country,
|
|
|
|
-)
|
|
|
|
-
|
|
|
|
-pd.set_option("future.no_silent_downcasting", True)
|
|
|
|
-
|
|
|
|
-# ###
|
|
|
|
-# configuration
|
|
|
|
-# ###
|
|
|
|
-
|
|
|
|
-# folders and files
|
|
|
|
-input_folder = downloaded_data_path / "non-UNFCCC" / "Japan" / "2024-Inventory"
|
|
|
|
-output_folder = extracted_data_path / "non-UNFCCC" / "Japan"
|
|
|
|
-if not output_folder.exists():
|
|
|
|
- output_folder.mkdir()
|
|
|
|
-
|
|
|
|
-output_filename = "JPN_2023-Inventory_2024_"
|
|
|
|
-
|
|
|
|
-inventory_file = "L5-7gas_2024_gioweb_ver1.0.xlsx"
|
|
|
|
-
|
|
|
|
-# time_format = "%Y"
|
|
|
|
-name_for_cat_col = "category"
|
|
|
|
-compression = dict(zlib=True, complevel=9)
|
|
|
|
-
|
|
|
|
-# ###
|
|
|
|
-# start data reading
|
|
|
|
-# ###
|
|
|
|
-
|
|
|
|
-# change working directory to script directory for proper folder names
|
|
|
|
-script_path = os.path.abspath(sys.argv[0])
|
|
|
|
-script_dir_name = os.path.dirname(script_path)
|
|
|
|
-os.chdir(script_dir_name)
|
|
|
|
-
|
|
|
|
-data_pm2 = None
|
|
|
|
-
|
|
|
|
-for sheet in sheets_to_read:
|
|
|
|
- # read sheet for the year. Each sheet contains several tables,
|
|
|
|
- # we only read the upper row as the other tables are summary tables
|
|
|
|
- current_sheet_config = sheets_to_read[sheet]
|
|
|
|
- df_current = pd.read_excel(
|
|
|
|
- input_folder / inventory_file,
|
|
|
|
- sheet_name=sheet,
|
|
|
|
- engine="openpyxl",
|
|
|
|
- **current_sheet_config["xls_params"],
|
|
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
+ pd.set_option("future.no_silent_downcasting", True)
|
|
|
|
+
|
|
|
|
+ # ###
|
|
|
|
+ # configuration
|
|
|
|
+ # ###
|
|
|
|
+
|
|
|
|
+ # folders and files
|
|
|
|
+ input_folder = downloaded_data_path / "non-UNFCCC" / "Japan" / "2024-Inventory"
|
|
|
|
+ output_folder = extracted_data_path / "non-UNFCCC" / "Japan"
|
|
|
|
+ if not output_folder.exists():
|
|
|
|
+ output_folder.mkdir()
|
|
|
|
+
|
|
|
|
+ output_filename = "JPN_2024-Inventory_"
|
|
|
|
+
|
|
|
|
+ inventory_file = "L5-7gas_2024_gioweb_ver1.0.xlsx"
|
|
|
|
+
|
|
|
|
+ # time_format = "%Y"
|
|
|
|
+ name_for_cat_col = "category"
|
|
|
|
+ compression = dict(zlib=True, complevel=9)
|
|
|
|
+
|
|
|
|
+ # ###
|
|
|
|
+ # start data reading
|
|
|
|
+ # ###
|
|
|
|
+
|
|
|
|
+ # change working directory to script directory for proper folder names
|
|
|
|
+ script_path = os.path.abspath(sys.argv[0])
|
|
|
|
+ script_dir_name = os.path.dirname(script_path)
|
|
|
|
+ os.chdir(script_dir_name)
|
|
|
|
+
|
|
|
|
+ data_pm2 = None
|
|
|
|
+
|
|
|
|
+ for sheet in sheets_to_read:
|
|
|
|
+ # read sheet for the year. Each sheet contains several tables,
|
|
|
|
+ # we only read the upper row as the other tables are summary tables
|
|
|
|
+ current_sheet_config = sheets_to_read[sheet]
|
|
|
|
+ df_current = pd.read_excel(
|
|
|
|
+ input_folder / inventory_file,
|
|
|
|
+ sheet_name=sheet,
|
|
|
|
+ engine="openpyxl",
|
|
|
|
+ **current_sheet_config["xls_params"],
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ # process category and entity
|
|
|
|
+ if current_sheet_config["entity"].startswith("COL_"):
|
|
|
|
+ # processing with entity
|
|
|
|
+ entity_col = current_sheet_config["entity"][4:]
|
|
|
|
+ df_current[entity_col] = df_current[entity_col].ffill()
|
|
|
|
+ df_current[current_sheet_config["cat_cols"]] = df_current[
|
|
|
|
+ current_sheet_config["cat_cols"]
|
|
|
|
+ ].fillna(value="Total")
|
|
|
|
+ df_current[entity_col] = df_current[entity_col].str.replace("\n", "")
|
|
|
|
+ df_current[entity_col] = df_current[entity_col].str.strip()
|
|
|
|
+ else:
|
|
|
|
+ # entity given for whole table
|
|
|
|
+ # print('not implemented')
|
|
|
|
+ df_current[current_sheet_config["cat_cols"]] = df_current[
|
|
|
|
+ current_sheet_config["cat_cols"]
|
|
|
|
+ ].bfill(axis=1)
|
|
|
|
+ df_current = df_current.drop(columns=current_sheet_config["cat_cols"][1:])
|
|
|
|
+ df_current = df_current.rename(
|
|
|
|
+ columns={current_sheet_config["cat_cols"][0]: name_for_cat_col}
|
|
|
|
+ )
|
|
|
|
+ df_current[name_for_cat_col] = df_current[name_for_cat_col].str.replace(
|
|
|
|
+ "\n", ""
|
|
|
|
+ )
|
|
|
|
+ df_current[name_for_cat_col] = df_current[name_for_cat_col].str.strip()
|
|
|
|
+
|
|
|
|
+ # convert to primap2 format
|
|
|
|
+ coords_value_mapping_current = coords_value_mapping.copy()
|
|
|
|
+ coords_value_mapping_current["category"] = current_sheet_config["cat_mapping"]
|
|
|
|
+ coords_cols_current = coords_cols.copy()
|
|
|
|
+ coords_defaults_current = coords_defaults.copy()
|
|
|
|
+ coords_defaults_current["unit"] = current_sheet_config["unit"]
|
|
|
|
+ if current_sheet_config["entity"].startswith("COL_"):
|
|
|
|
+ coords_cols_current["entity"] = entity_col
|
|
|
|
+ else:
|
|
|
|
+ coords_defaults_current["entity"] = current_sheet_config["entity"]
|
|
|
|
+
|
|
|
|
+ # make sure all column names are str
|
|
|
|
+ df_current.columns = df_current.columns.astype(str)
|
|
|
|
+
|
|
|
|
+ data_current_if = pm2.pm2io.convert_wide_dataframe_if(
|
|
|
|
+ df_current,
|
|
|
|
+ coords_cols=coords_cols_current,
|
|
|
|
+ add_coords_cols=None,
|
|
|
|
+ coords_defaults=coords_defaults_current,
|
|
|
|
+ coords_terminologies=coords_terminologies,
|
|
|
|
+ coords_value_mapping=coords_value_mapping_current,
|
|
|
|
+ # coords_value_filling=None,
|
|
|
|
+ filter_remove=filter_remove,
|
|
|
|
+ # filter_keep=filter_keep,
|
|
|
|
+ meta_data=meta_data,
|
|
|
|
+ time_format=time_format,
|
|
|
|
+ )
|
|
|
|
+ data_current_pm2 = pm2.pm2io.from_interchange_format(data_current_if)
|
|
|
|
+
|
|
|
|
+ if data_pm2 is None:
|
|
|
|
+ data_pm2 = data_current_pm2
|
|
|
|
+ else:
|
|
|
|
+ data_pm2 = data_pm2.pr.merge(data_current_pm2)
|
|
|
|
+
|
|
|
|
+ # convert back to IF to have units in the fixed format
|
|
|
|
+ data_if = data_pm2.pr.to_interchange_format()
|
|
|
|
+
|
|
|
|
+ # ###
|
|
|
|
+ # save data to IF and native format
|
|
|
|
+ # ###
|
|
|
|
+ pm2.pm2io.write_interchange_format(
|
|
|
|
+ output_folder / (output_filename + coords_terminologies["category"]), data_if
|
|
)
|
|
)
|
|
|
|
|
|
- # process category and entity
|
|
|
|
- if current_sheet_config["entity"].startswith("COL_"):
|
|
|
|
- # processing with entity
|
|
|
|
- entity_col = current_sheet_config["entity"][4:]
|
|
|
|
- df_current[entity_col] = df_current[entity_col].ffill()
|
|
|
|
- df_current[current_sheet_config["cat_cols"]] = df_current[
|
|
|
|
- current_sheet_config["cat_cols"]
|
|
|
|
- ].fillna(value="Total")
|
|
|
|
- df_current[entity_col] = df_current[entity_col].str.replace("\n", "")
|
|
|
|
- df_current[entity_col] = df_current[entity_col].str.strip()
|
|
|
|
- else:
|
|
|
|
- # entity given for whole table
|
|
|
|
- # print('not implemented')
|
|
|
|
- df_current[current_sheet_config["cat_cols"]] = df_current[
|
|
|
|
- current_sheet_config["cat_cols"]
|
|
|
|
- ].bfill(axis=1)
|
|
|
|
- df_current = df_current.drop(columns=current_sheet_config["cat_cols"][1:])
|
|
|
|
- df_current = df_current.rename(
|
|
|
|
- columns={current_sheet_config["cat_cols"][0]: name_for_cat_col}
|
|
|
|
|
|
+ encoding = {var: compression for var in data_pm2.data_vars}
|
|
|
|
+ data_pm2.pr.to_netcdf(
|
|
|
|
+ output_folder / (output_filename + coords_terminologies["category"] + ".nc"),
|
|
|
|
+ encoding=encoding,
|
|
)
|
|
)
|
|
- df_current[name_for_cat_col] = df_current[name_for_cat_col].str.replace("\n", "")
|
|
|
|
- df_current[name_for_cat_col] = df_current[name_for_cat_col].str.strip()
|
|
|
|
-
|
|
|
|
- # convert to primap2 format
|
|
|
|
- coords_value_mapping_current = coords_value_mapping.copy()
|
|
|
|
- coords_value_mapping_current["category"] = current_sheet_config["cat_mapping"]
|
|
|
|
- coords_cols_current = coords_cols.copy()
|
|
|
|
- coords_defaults_current = coords_defaults.copy()
|
|
|
|
- coords_defaults_current["unit"] = current_sheet_config["unit"]
|
|
|
|
- if current_sheet_config["entity"].startswith("COL_"):
|
|
|
|
- coords_cols_current["entity"] = entity_col
|
|
|
|
- else:
|
|
|
|
- coords_defaults_current["entity"] = current_sheet_config["entity"]
|
|
|
|
-
|
|
|
|
- # make sure all column names are str
|
|
|
|
- df_current.columns = df_current.columns.astype(str)
|
|
|
|
-
|
|
|
|
- data_current_if = pm2.pm2io.convert_wide_dataframe_if(
|
|
|
|
- df_current,
|
|
|
|
- coords_cols=coords_cols_current,
|
|
|
|
- add_coords_cols=None,
|
|
|
|
- coords_defaults=coords_defaults_current,
|
|
|
|
- coords_terminologies=coords_terminologies,
|
|
|
|
- coords_value_mapping=coords_value_mapping_current,
|
|
|
|
- # coords_value_filling=None,
|
|
|
|
- filter_remove=filter_remove,
|
|
|
|
- # filter_keep=filter_keep,
|
|
|
|
- meta_data=meta_data,
|
|
|
|
- time_format=time_format,
|
|
|
|
- )
|
|
|
|
- data_current_pm2 = pm2.pm2io.from_interchange_format(data_current_if)
|
|
|
|
-
|
|
|
|
- if data_pm2 is None:
|
|
|
|
- data_pm2 = data_current_pm2
|
|
|
|
- else:
|
|
|
|
- data_pm2 = data_pm2.pr.merge(data_current_pm2)
|
|
|
|
|
|
|
|
-# convert back to IF to have units in the fixed format
|
|
|
|
-data_if = data_pm2.pr.to_interchange_format()
|
|
|
|
-
|
|
|
|
-# ###
|
|
|
|
-# save data to IF and native format
|
|
|
|
-# ###
|
|
|
|
-pm2.pm2io.write_interchange_format(
|
|
|
|
- output_folder / (output_filename + coords_terminologies["category"]), data_if
|
|
|
|
-)
|
|
|
|
-
|
|
|
|
-encoding = {var: compression for var in data_pm2.data_vars}
|
|
|
|
-data_pm2.pr.to_netcdf(
|
|
|
|
- output_folder / (output_filename + coords_terminologies["category"] + ".nc"),
|
|
|
|
- encoding=encoding,
|
|
|
|
-)
|
|
|
|
|
|
+ # ###
|
|
|
|
+ # conversion to ipcc 2006 categories
|
|
|
|
+ # ###
|
|
|
|
|
|
-# ###
|
|
|
|
-# conversion to ipcc 2006 categories
|
|
|
|
-# ###
|
|
|
|
|
|
+ data_pm2_2006 = data_pm2.copy()
|
|
|
|
|
|
-data_pm2_2006 = data_pm2.copy()
|
|
|
|
|
|
+ # actual processing
|
|
|
|
|
|
-# actual processing
|
|
|
|
|
|
+ country_processing = {
|
|
|
|
+ "basket_copy": basket_copy,
|
|
|
|
+ }
|
|
|
|
|
|
-country_processing = {
|
|
|
|
- "basket_copy": basket_copy,
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-data_pm2_2006 = process_data_for_country(
|
|
|
|
- data_pm2_2006,
|
|
|
|
- entities_to_ignore=[],
|
|
|
|
- gas_baskets=gas_baskets,
|
|
|
|
- processing_info_country=country_processing,
|
|
|
|
- cat_terminology_out=terminology_proc,
|
|
|
|
- category_conversion=cat_conversion,
|
|
|
|
- # sectors_out=sectors_to_save,
|
|
|
|
-)
|
|
|
|
-
|
|
|
|
-# adapt source and metadata
|
|
|
|
-# TODO: processing info is present twice
|
|
|
|
-current_source = data_pm2_2006.coords["source"].to_numpy()[0]
|
|
|
|
-data_temp = data_pm2_2006.pr.loc[{"source": current_source}]
|
|
|
|
-data_pm2_2006 = data_pm2_2006.pr.set("source", "AI_INV", data_temp)
|
|
|
|
-data_pm2_2006 = data_pm2_2006.pr.loc[{"source": ["AI_INV"]}]
|
|
|
|
|
|
+ data_pm2_2006 = process_data_for_country(
|
|
|
|
+ data_pm2_2006,
|
|
|
|
+ entities_to_ignore=[],
|
|
|
|
+ gas_baskets=gas_baskets,
|
|
|
|
+ processing_info_country=country_processing,
|
|
|
|
+ cat_terminology_out=terminology_proc,
|
|
|
|
+ category_conversion=cat_conversion,
|
|
|
|
+ # sectors_out=sectors_to_save,
|
|
|
|
+ )
|
|
|
|
|
|
|
|
+ # adapt source and metadata
|
|
|
|
+ # TODO: processing info is present twice
|
|
|
|
+ current_source = data_pm2_2006.coords["source"].to_numpy()[0]
|
|
|
|
+ data_temp = data_pm2_2006.pr.loc[{"source": current_source}]
|
|
|
|
+ data_pm2_2006 = data_pm2_2006.pr.set("source", "AI_INV", data_temp)
|
|
|
|
+ data_pm2_2006 = data_pm2_2006.pr.loc[{"source": ["AI_INV"]}]
|
|
|
|
|
|
-# convert back to IF to have units in the fixed format
|
|
|
|
-data_if_2006 = data_pm2_2006.pr.to_interchange_format()
|
|
|
|
|
|
+ # convert back to IF to have units in the fixed format
|
|
|
|
+ data_if_2006 = data_pm2_2006.pr.to_interchange_format()
|
|
|
|
|
|
-pm2.pm2io.write_interchange_format(
|
|
|
|
- output_folder / (output_filename + terminology_proc),
|
|
|
|
- data_if_2006,
|
|
|
|
-)
|
|
|
|
|
|
+ pm2.pm2io.write_interchange_format(
|
|
|
|
+ output_folder / (output_filename + terminology_proc),
|
|
|
|
+ data_if_2006,
|
|
|
|
+ )
|
|
|
|
|
|
-encoding = {var: compression for var in data_pm2_2006.data_vars}
|
|
|
|
-data_pm2_2006.pr.to_netcdf(
|
|
|
|
- output_folder / (output_filename + terminology_proc + ".nc"),
|
|
|
|
- encoding=encoding,
|
|
|
|
-)
|
|
|
|
|
|
+ encoding = {var: compression for var in data_pm2_2006.data_vars}
|
|
|
|
+ data_pm2_2006.pr.to_netcdf(
|
|
|
|
+ output_folder / (output_filename + terminology_proc + ".nc"),
|
|
|
|
+ encoding=encoding,
|
|
|
|
+ )
|