|
@@ -175,6 +175,18 @@ if __name__ == "__main__":
|
|
|
aggregate_cats_N2O = {
|
|
|
"3.A.2": {"sources": ["3.A.2.b"], "orig_cat_name": "3A2 Manure Management"},
|
|
|
"3.A": {"sources": ["3.A.2"], "orig_cat_name": "3A Livestock"},
|
|
|
+ "3": {
|
|
|
+ "sources": ["3.A", "3.B", "3.C", "3.D"],
|
|
|
+ "orig_cat_name": "3 AGRICULTURE, FORESTRY AND OTHER LAND USE",
|
|
|
+ },
|
|
|
+ }
|
|
|
+
|
|
|
+ aggregate_cats_CH4 = {
|
|
|
+ "3.A": {"sources": ["3.A.1", "3.A.2"], "orig_cat_name": "3A Livestock"},
|
|
|
+ "3": {
|
|
|
+ "sources": ["3.A", "3.B", "3.C", "3.D"],
|
|
|
+ "orig_cat_name": "3 AGRICULTURE, FORESTRY AND OTHER LAND USE",
|
|
|
+ },
|
|
|
}
|
|
|
|
|
|
aggregate_cats_CO2CH4N2O = {
|
|
@@ -308,6 +320,7 @@ if __name__ == "__main__":
|
|
|
]
|
|
|
).sum(min_count=1)
|
|
|
|
|
|
+ df_combine = df_combine.drop(columns=[cat_label, "orig_cat_name"])
|
|
|
df_combine.insert(0, cat_label, cat_to_agg)
|
|
|
df_combine.insert(
|
|
|
1, "orig_cat_name", aggregate_cats[cat_to_agg]["orig_cat_name"]
|
|
@@ -320,10 +333,11 @@ if __name__ == "__main__":
|
|
|
print(f"no data to aggregate category {cat_to_agg}")
|
|
|
|
|
|
# delete cat 3 for N2O as it's wrong
|
|
|
- index_3A_N2O = data_if[
|
|
|
- (data_if[cat_label] == "3") & (data_if["entity"] == "N2O")
|
|
|
+ index_3_N2O = data_if[
|
|
|
+ (data_if[cat_label].isin(["3", "3.A", "3.A.2"]))
|
|
|
+ & (data_if["entity"].isin(["N2O"]))
|
|
|
].index
|
|
|
- data_if = data_if.drop(index_3A_N2O)
|
|
|
+ data_if = data_if.drop(index_3_N2O)
|
|
|
|
|
|
# aggregate cat 3 for N2O
|
|
|
for cat_to_agg in aggregate_cats_N2O:
|
|
@@ -356,6 +370,55 @@ if __name__ == "__main__":
|
|
|
]
|
|
|
).sum(min_count=1)
|
|
|
|
|
|
+ df_combine = df_combine.drop(columns=[cat_label, "orig_cat_name"])
|
|
|
+ df_combine.insert(0, cat_label, cat_to_agg)
|
|
|
+ df_combine.insert(
|
|
|
+ 1, "orig_cat_name", aggregate_cats_N2O[cat_to_agg]["orig_cat_name"]
|
|
|
+ )
|
|
|
+
|
|
|
+ df_combine = df_combine.reset_index()
|
|
|
+
|
|
|
+ data_if = pd.concat([data_if, df_combine])
|
|
|
+ else:
|
|
|
+ print(f"no data to aggregate category {cat_to_agg}")
|
|
|
+
|
|
|
+ index_3_CH4 = data_if[
|
|
|
+ (data_if[cat_label].isin(["3", "3.A"])) & (data_if["entity"].isin(["CH4"]))
|
|
|
+ ].index
|
|
|
+ data_if = data_if.drop(index_3_CH4)
|
|
|
+
|
|
|
+ # aggregate cat 3 for CH4
|
|
|
+ for cat_to_agg in aggregate_cats_CH4:
|
|
|
+ mask = data_if[cat_label].isin(aggregate_cats_CH4[cat_to_agg]["sources"])
|
|
|
+ df_test = data_if[mask]
|
|
|
+ df_test = df_test[df_test["entity"] == "CH4"]
|
|
|
+
|
|
|
+ if len(df_test) > 0:
|
|
|
+ print(f"Aggregating category {cat_to_agg}")
|
|
|
+ df_combine = df_test.copy(deep=True)
|
|
|
+
|
|
|
+ time_format = "%Y"
|
|
|
+ time_columns = [
|
|
|
+ col
|
|
|
+ for col in df_combine.columns.to_numpy()
|
|
|
+ if matches_time_format(col, time_format)
|
|
|
+ ]
|
|
|
+
|
|
|
+ for col in time_columns:
|
|
|
+ df_combine[col] = pd.to_numeric(df_combine[col], errors="coerce")
|
|
|
+
|
|
|
+ df_combine = df_combine.groupby(
|
|
|
+ by=[
|
|
|
+ "source",
|
|
|
+ "scenario (PRIMAP)",
|
|
|
+ "provenance",
|
|
|
+ "area (ISO3)",
|
|
|
+ "entity",
|
|
|
+ "unit",
|
|
|
+ ]
|
|
|
+ ).sum(min_count=1)
|
|
|
+
|
|
|
+ df_combine = df_combine.drop(columns=[cat_label, "orig_cat_name"])
|
|
|
df_combine.insert(0, cat_label, cat_to_agg)
|
|
|
df_combine.insert(
|
|
|
1, "orig_cat_name", aggregate_cats_N2O[cat_to_agg]["orig_cat_name"]
|
|
@@ -369,11 +432,11 @@ if __name__ == "__main__":
|
|
|
|
|
|
# delete cat 3.A.2 for CO2CH4N2O as it's wrong
|
|
|
index_3A2_CO2CH4N2O = data_if[
|
|
|
- (data_if[cat_label] == "3.A.2") & (data_if["entity"] == "CH4CO2N2O (SARGWP100)")
|
|
|
+ (data_if[cat_label] == "3.A.2") & (data_if["entity"] == "CO2CH4N2O (SARGWP100)")
|
|
|
].index
|
|
|
data_if = data_if.drop(index_3A2_CO2CH4N2O)
|
|
|
|
|
|
- # aggregate cat 3 for N2O
|
|
|
+ # aggregate cat 3 for CO2CH4N2O
|
|
|
for cat_to_agg in aggregate_cats_CO2CH4N2O:
|
|
|
mask = data_if[cat_label].isin(aggregate_cats_CO2CH4N2O[cat_to_agg]["sources"])
|
|
|
df_test = data_if[mask]
|
|
@@ -404,6 +467,7 @@ if __name__ == "__main__":
|
|
|
]
|
|
|
).sum(min_count=1)
|
|
|
|
|
|
+ df_combine = df_combine.drop(columns=[cat_label, "orig_cat_name"])
|
|
|
df_combine.insert(0, cat_label, cat_to_agg)
|
|
|
df_combine.insert(
|
|
|
1,
|
|
@@ -417,6 +481,12 @@ if __name__ == "__main__":
|
|
|
else:
|
|
|
print(f"no data to aggregate category {cat_to_agg}")
|
|
|
|
|
|
+ # Fix 4.B.1 for CH4 as it's wrong
|
|
|
+ index_4B1_CH4 = data_if[
|
|
|
+ (data_if[cat_label] == "4.B.1") & (data_if["entity"] == "CH4")
|
|
|
+ ].index
|
|
|
+ data_if.loc[index_4B1_CH4]["2019"] = data_if.loc[index_4B1_CH4]["2019"] / 100
|
|
|
+
|
|
|
data_if.attrs = attrs
|
|
|
|
|
|
data_pm2 = pm2.pm2io.from_interchange_format(data_if)
|