|
@@ -13,6 +13,7 @@ from unfccc_ghg_data.unfccc_reader.Cabo_Verde.config_cpv_bur1 import (
|
|
|
coords_defaults,
|
|
|
coords_terminologies,
|
|
|
coords_value_mapping,
|
|
|
+ inv_conf_main,
|
|
|
inv_conf_per_sector,
|
|
|
meta_data,
|
|
|
trend_years,
|
|
@@ -35,10 +36,42 @@ if __name__ == "__main__":
|
|
|
compression = dict(zlib=True, complevel=9)
|
|
|
|
|
|
# ###
|
|
|
- # 1. Read in tables
|
|
|
+ # 2. Read sector-specific main tables for 2019
|
|
|
+ # ###
|
|
|
+
|
|
|
+ df_main = None
|
|
|
+ for page in inv_conf_main["pages"].keys():
|
|
|
+ tables_inventory_original = camelot.read_pdf(
|
|
|
+ str(input_folder / pdf_file),
|
|
|
+ pages=page,
|
|
|
+ flavor="lattice",
|
|
|
+ split_text=True,
|
|
|
+ )
|
|
|
+
|
|
|
+ df_page = tables_inventory_original[0].df
|
|
|
+
|
|
|
+ skip_rows_start = inv_conf_main["pages"][page]["skip_rows_start"]
|
|
|
+ if not skip_rows_start == 0:
|
|
|
+ df_page = df_page[skip_rows_start:]
|
|
|
+
|
|
|
+ # stack the tables vertically
|
|
|
+ if df_main is None:
|
|
|
+ df_main = df_page
|
|
|
+ else:
|
|
|
+ df_main = pd.concat(
|
|
|
+ [
|
|
|
+ df_main,
|
|
|
+ df_page,
|
|
|
+ ],
|
|
|
+ axis=0,
|
|
|
+ join="outer",
|
|
|
+ ).reset_index(drop=True)
|
|
|
+
|
|
|
+ # ###
|
|
|
+ # 1. Read trend tables 1995, 2000, 2005, 2010, 2015 and 2019
|
|
|
# ###
|
|
|
df_trend = None
|
|
|
- for sector in reversed(inv_conf_per_sector.keys()):
|
|
|
+ for sector in inv_conf_per_sector.keys():
|
|
|
tables_inventory_original = camelot.read_pdf(
|
|
|
str(input_folder / pdf_file),
|
|
|
pages=inv_conf_per_sector[sector]["page"],
|
|
@@ -107,4 +140,6 @@ if __name__ == "__main__":
|
|
|
meta_data=meta_data,
|
|
|
)
|
|
|
|
|
|
- pass
|
|
|
+ ### convert to primap2 format ###
|
|
|
+ print("Converting to primap2 format.")
|
|
|
+ data_pm2 = pm2.pm2io.from_interchange_format(data_if)
|