Browse Source

Add code for Indonesia BUR3

Johannes Gütschow 2 years ago
parent
commit
5b10f14707

+ 309 - 0
code/UNFCCC_reader/Indonesia/read_IDN_BUR3_from_pdf.py

@@ -0,0 +1,309 @@
+# this script reads data from Indonesia's BUR3
+# Data is read from pdf
+# only the 2019 inventory is read as the BUR refers to BUR2 for earlier years
+
+import pandas as pd
+import primap2 as pm2
+from pathlib import Path
+import camelot
+import numpy as np
+from primap2.pm2io._data_reading import matches_time_format
+
+
+# ###
+# configuration
+# ###
+root_path = Path(__file__).parents[3].absolute()
+root_path = root_path.resolve()
+downloaded_data_path = root_path / "downloaded_data"
+extracted_data_path = root_path / "extracted_data"
+
+
+input_folder = downloaded_data_path / 'UNFCCC' / 'Indonesia' / 'BUR3'
+output_folder = extracted_data_path / 'UNFCCC' / 'Indonesia'
+if not output_folder.exists():
+    output_folder.mkdir()
+
+output_filename = 'IDN_BUR3_2021_'
+
+inventory_file = 'IndonesiaBUR_3_FINAL_REPORT_2.pdf'
+
+gwp_to_use = 'SARGWP100'
+
+pages_to_read = range(61,65) # 65 is not read properly but contains almost no data anyway, so add it by hand '61-65'
+
+compression = dict(zlib=True, complevel=9)
+
+year = 2019
+entity_row = 0
+unit_row = 1
+index_cols = "Categories"
+# special header as category code and name in one column
+header_long = ["orig_cat_name", "entity", "unit", "time", "data"]
+
+
+# manual category codes
+cat_codes_manual = {
+    'Total National Emissions and Removals': '0',
+    'Peat Decomposition': 'M.PD',
+    'Peat Fire': 'M.PF',
+    '4A1.2 Industrial Solid Waste Disposal': 'M.4.A.Ind',
+}
+
+cat_code_regexp = r'(?P<code>^[a-zA-Z0-9]{1,4})\s.*'
+
+coords_cols = {
+    "category": "category",
+    "entity": "entity",
+    "unit": "unit",
+}
+
+
+coords_terminologies = {
+    "area": "ISO3",
+    "category": "IPCC2006",
+    "scenario": "PRIMAP",
+}
+
+coords_defaults = {
+    "source": "IDN-GHG-Inventory",
+    "provenance": "measured",
+    "area": "IDN",
+    "scenario": "BUR3",
+}
+
+coords_value_mapping = {
+    "unit": "PRIMAP1",
+    "category": "PRIMAP1",
+    "entity": {
+        'Total 3 Gases': f"CO2CH4N2O ({gwp_to_use})",
+        'Net CO2 (1) (2)': 'CO2',
+        'CH4': f"CH4 ({gwp_to_use})",
+        'N2O': f"N2O ({gwp_to_use})",
+        'HFCs': f"HFCS ({gwp_to_use})",
+        'PFCs': f"PFCS ({gwp_to_use})",
+        'SF6': f"SF6 ({gwp_to_use})",
+        'NOx': 'NOX',
+        'CO': 'CO', # no mapping, just added for completeness here
+        'NMVOCs': 'NMVOC',
+        'SO2': 'SO2', # no mapping, just added for completeness here
+        'Other halogenated gases with CO2 equivalent conversion factors (3)': f"OTHERHFCS ({gwp_to_use})",
+    },
+}
+
+
+filter_remove = {
+    "fHFC": {"entity": 'Other halogenated gases without CO2 equivalent conversion factors (4)'}
+}
+
+filter_keep = {}
+
+meta_data = {
+    "references": "https://unfccc.int/documents/403577",
+    "rights": "",
+    "contact": "mail@johannes-guestchow.de",
+    "title": "Indonesia. Biennial update report (BUR). BUR3",
+    "comment": "Read fom pdf by Johannes Gütschow",
+    "institution": "UNFCCC",
+}
+
+# convert to mass units where possible
+entities_to_convert_to_mass = [
+    'CH4', 'N2O', 'SF6'
+]
+
+# CO2 equivalents don't make sense for these substances, so unit has to be Gg instead of Gg CO2 equivalents as indicated in the table
+entities_to_fix_unit = [
+    'NOx', 'CO', 'NMVOCs', 'SO2'
+]
+
+# add the data for the last page by hand as it's only one row
+data_last_page = [
+    ['5B Other (please specify)', 'Total 3 Gases', 'GgCO2eq', '2019', 'NE'],
+    ['5B Other (please specify)', 'Net CO2 (1) (2)', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'CH4', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'N2O', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'HFCs', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'PFCs', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'SF6', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'Other halogenated gases with CO2 equivalent conversion factors (3)', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'Other halogenated gases without CO2 equivalent conversion factors (4)', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'NOx', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'CO', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'NMVOCs', 'GgCO2eq', '2019', np.nan],
+    ['5B Other (please specify)', 'SO2', 'GgCO2eq', '2019', np.nan],
+]
+
+df_last_page = pd.DataFrame(data_last_page, columns=header_long)
+
+aggregate_cats = {
+    '1.A.4': {'sources': ['1.A.4.a', '1.A.4.b'], 'name': 'Other Sectors (calculated)'},
+    '2.A.4': {'sources': ['2.A.4.a', '2.A.4.b', '2.A.4.d'], 'name': 'Other Process uses of Carbonates (calculated)'},
+    '2.B.8': {'sources': ['2.B.8.a', '2.B.8.b', '2.B.8.c', '2.B.8.f'], 'name': 'Petrochemical and Carbon Black production (calculated)'},
+    '4.A': {'sources': ['4.A.2', 'M.4.A.Ind'], 'name': 'Solid Waste Disposal (calculated)'},
+}
+
+df_all = None
+
+for page in pages_to_read:
+    tables = camelot.read_pdf(str(input_folder / inventory_file), pages=str(page),
+                              flavor='lattice')
+    df_this_table = tables[0].df
+    # replace line breaks, double, and triple spaces in category names
+    df_this_table.iloc[:, 0] = df_this_table.iloc[:, 0].str.replace("\n", " ")
+    df_this_table.iloc[:, 0] = df_this_table.iloc[:, 0].str.replace("   ", " ")
+    df_this_table.iloc[:, 0] = df_this_table.iloc[:, 0].str.replace("  ", " ")
+    # replace line breaks in units and entities
+    df_this_table.iloc[entity_row] = df_this_table.iloc[entity_row].str.replace('\n',
+                                                                                '')
+    df_this_table.iloc[unit_row] = df_this_table.iloc[unit_row].str.replace('\n', '')
+
+    df_this_table = pm2.pm2io.nir_add_unit_information(df_this_table, unit_row=unit_row,
+                                                       entity_row=entity_row,
+                                                       regexp_entity=".*",
+                                                       default_unit="GgCO2eq")  # , **unit_info)
+
+    # set index and convert to long format
+    df_this_table = df_this_table.set_index(index_cols)
+    df_this_table_long = pm2.pm2io.nir_convert_df_to_long(df_this_table, year,
+                                                          header_long)
+    df_this_table_long["orig_cat_name"] = df_this_table_long["orig_cat_name"].str[0]
+
+    # combine with tables for other sectors (merge not append)
+    if df_all is None:
+        df_all = df_this_table_long
+    else:
+        df_all = pd.concat([df_all, df_this_table_long], axis=0, join='outer')
+
+# add the last page manually
+df_all = pd.concat([df_all, df_last_page], axis=0, join='outer')
+
+# fix the units of aerosols and precursors
+for entity in entities_to_fix_unit:
+    df_all["unit"][df_all["entity"] == entity] = "Gg"
+
+# make a copy of the categories row
+df_all["category"] = df_all["orig_cat_name"]
+
+# replace cat names by codes in col "category"
+# first the manual replacements
+df_all["category"] = df_all["category"].replace(cat_codes_manual)
+# then the regex replacements
+repl = lambda m: m.group('code')
+df_all["category"] = df_all["category"].str.replace(cat_code_regexp, repl, regex=True)
+df_all = df_all.reset_index(drop=True)
+
+###### convert to primap2 IF
+
+# replace "," with "" in data
+df_all.loc[:, "data"] = df_all.loc[:, "data"].str.replace(',','', regex=False)
+
+
+# make sure all col headers are str
+df_all.columns = df_all.columns.map(str)
+
+# ###
+# convert to PRIMAP2 interchange format
+# ###
+data_if = pm2.pm2io.convert_long_dataframe_if(
+    df_all,
+    coords_cols=coords_cols,
+    #add_coords_cols=add_coords_cols,
+    coords_defaults=coords_defaults,
+    coords_terminologies=coords_terminologies,
+    coords_value_mapping=coords_value_mapping,
+    #coords_value_filling=coords_value_filling,
+    filter_remove=filter_remove,
+    #filter_keep=filter_keep,
+    meta_data=meta_data,
+    convert_str=True
+    )
+
+cat_label = "category (IPCC2006)"
+
+# fix error cats
+data_if[cat_label] = data_if[cat_label].str.replace("error_", "")
+
+# aggregate categories
+attrs = data_if.attrs
+for cat_to_agg in aggregate_cats:
+    mask = data_if[cat_label].isin(aggregate_cats[cat_to_agg]["sources"])
+    df_test = data_if[mask]
+
+    if len(df_test) > 0:
+        print(f"Aggregating category {cat_to_agg}")
+        df_combine = df_test.copy(deep=True)
+
+        time_format = '%Y'
+        time_columns = [
+            col
+            for col in df_combine.columns.values
+            if matches_time_format(col, time_format)
+        ]
+
+        for col in time_columns:
+            df_combine[col] = pd.to_numeric(df_combine[col], errors="coerce")
+
+        df_combine = df_combine.groupby(
+            by=['source', 'scenario (PRIMAP)', 'provenance', 'area (ISO3)', 'entity',
+                'unit']).sum()
+
+        df_combine.insert(0, cat_label, cat_to_agg)
+        df_combine.insert(1, "orig_cat_name", aggregate_cats[cat_to_agg]["name"])
+
+        df_combine = df_combine.reset_index()
+
+        data_if = pd.concat([data_if, df_combine])
+    else:
+        print(f"no data to aggregate category {cat_to_agg}")
+data_if.attrs = attrs
+
+data_pm2 = pm2.pm2io.from_interchange_format(data_if)
+
+# convert to mass units from CO2eq
+entities_to_convert = [f"{entity} ({gwp_to_use})" for entity in
+                       entities_to_convert_to_mass]
+
+for entity in entities_to_convert:
+    converted = data_pm2[entity].pr.convert_to_mass()
+    basic_entity = entity.split(" ")[0]
+    converted = converted.to_dataset(name=basic_entity)
+    data_pm2 = data_pm2.pr.merge(converted)
+    data_pm2[basic_entity].attrs["entity"] = basic_entity
+
+# drop the GWP data
+data_pm2 = data_pm2.drop_vars(entities_to_convert)
+
+# convert back to IF to have units in the fixed format
+data_if = data_pm2.pr.to_interchange_format()
+
+# ###
+# save data to IF and native format
+# ###
+if not output_folder.exists():
+    output_folder.mkdir()
+pm2.pm2io.write_interchange_format(
+    output_folder / (output_filename + coords_terminologies["category"]), data_if)
+
+encoding = {var: compression for var in data_pm2.data_vars}
+data_pm2.pr.to_netcdf(
+    output_folder / (output_filename + coords_terminologies["category"] + ".nc"),
+    encoding=encoding)
+
+
+
+
+
+
+# convert back to IF to have units in the fixed format
+data_if = data_pm2.pr.to_interchange_format()
+
+# ###
+# save data to IF and native format
+# ###
+if not output_folder.exists():
+    output_folder.mkdir()
+pm2.pm2io.write_interchange_format(output_folder / (output_filename + coords_terminologies["category"]), data_if)
+
+encoding = {var: compression for var in data_pm2.data_vars}
+data_pm2.pr.to_netcdf(output_folder / (output_filename + coords_terminologies["category"] + ".nc"), encoding=encoding)

+ 1 - 0
code/requirements.txt

@@ -9,3 +9,4 @@ datalad
 treelib
 camelot-py
 opencv-python
+ghostscript

+ 1 - 0
extracted_data/UNFCCC/Indonesia/IDN_BUR3_2021_IPCC2006.csv

@@ -0,0 +1 @@
+../../../.git/annex/objects/xK/PV/MD5E-s34158--478b088143e54888bc392408bfe41267.csv/MD5E-s34158--478b088143e54888bc392408bfe41267.csv

+ 1 - 0
extracted_data/UNFCCC/Indonesia/IDN_BUR3_2021_IPCC2006.nc

@@ -0,0 +1 @@
+../../../.git/annex/objects/vg/Gx/MD5E-s146984--8c5a3d32c027a9d04f681ccc03adc755.nc/MD5E-s146984--8c5a3d32c027a9d04f681ccc03adc755.nc

+ 23 - 0
extracted_data/UNFCCC/Indonesia/IDN_BUR3_2021_IPCC2006.yaml

@@ -0,0 +1,23 @@
+attrs:
+  references: https://unfccc.int/documents/403577
+  rights: ''
+  contact: mail@johannes-guestchow.de
+  title: Indonesia. Biennial update report (BUR). BUR3
+  comment: Read fom pdf by Johannes Gütschow
+  institution: UNFCCC
+  cat: category (IPCC2006)
+  area: area (ISO3)
+  scen: scenario (PRIMAP)
+time_format: '%Y'
+dimensions:
+  '*':
+  - time
+  - area (ISO3)
+  - provenance
+  - orig_cat_name
+  - source
+  - category (IPCC2006)
+  - scenario (PRIMAP)
+  - entity
+  - unit
+data_file: IDN_BUR3_2021_IPCC2006.csv