"""Downloads all domain data sets from FAOSTAT website.""" from faostat_data_primap.download import ( download_all_domains, ) # def download_all_domains( # domains: list[tuple[str]] = domains, # downloaded_data_path: str = downloaded_data_path, # ) -> list[str]: # """ # Download and unpack all climate-related domains from the FAO stat website. # # Extract the date when the data set was last updated and create a directory # with the same name. Download the zip files for each domain if # it does not already exist. Unpack the zip file and save in # the same directory. # # Parameters # ---------- # sources # Name of data set, url to domain overview, # and download url # # Returns # ------- # List of input files that have been fetched or found locally. # # """ # downloaded_files = [] # for ds_name, urls in domains.items(): # url = urls["url_domain"] # url_download = urls["url_download"] # url_methodology = urls["url_methodology"] # # soup = get_html_content(url) # # last_updated = get_last_updated_date(soup, url) # # if not downloaded_data_path.exists(): # downloaded_data_path.mkdir() # # ds_path = downloaded_data_path / ds_name # if not ds_path.exists(): # ds_path.mkdir() # # local_data_dir = ds_path / last_updated # if not local_data_dir.exists(): # local_data_dir.mkdir() # # download_methodology(save_path=local_data_dir, url_download=url_methodology) # # local_filename = local_data_dir / f"{ds_name}.zip" # # download_file(url_download=url_download, save_path=local_filename) # # downloaded_files.append(str(local_filename)) # # unzip_file(local_filename) # # return downloaded_files if __name__ == "__main__": download_all_domains()