import climate_categories as cc import primap2 as pm2 import xarray as xr from src.faostat_data_primap.helper.category_aggregation import ( agg_info_fao, agg_info_ipcc2006_primap_CH4, agg_info_ipcc2006_primap_CO2, agg_info_ipcc2006_primap_N2O, ) from src.faostat_data_primap.helper.paths import ( downloaded_data_path, extracted_data_path, ) from src.faostat_data_primap.read import read_data def test_conversion_from_FAO_to_IPCC2006_PRIMAP_output_equal(): # make categorisation A from yaml categorisation_a = cc.FAO # make categorisation B from yaml categorisation_b = cc.IPCC2006_PRIMAP # category FAOSTAT not yet part of climate categories, so we need to add it manually cats = { "FAO": categorisation_a, "IPCC2006_PRIMAP": categorisation_b, } # release_name = "v2024-11-14" release_name = "v2023-12-13" # reproduce 2023 data set reproduce23 = True ds_fao = ( extracted_data_path # / "v2024-11-14/FAOSTAT_Agrifood_system_emissions_v2024-11-14_raw.nc" / f"{release_name}/FAOSTAT_Agrifood_system_emissions_{release_name}_raw.nc" ) ds = pm2.open_dataset(ds_fao) # drop UNFCCC data ds = ds.drop_sel(source="UNFCCC") # consistency check in original categorisation ds_checked = ds.pr.add_aggregates_coordinates(agg_info=agg_info_fao) # noqa: F841 # ds_checked_if = ds_checked.pr.to_interchange_format() # We need a conversion CSV file for each entity # That's a temporary workaround until convert function can filter for data variables (entities) conv = {} gases = ["CO2", "CH4", "N2O"] if reproduce23: reproduce23_filename = "_reproduce23" else: reproduce23_filename = "" for var in gases: conv[var] = cc.Conversion.from_csv( f"../../conversion_FAO_IPPCC2006_PRIMAP_{var}{reproduce23_filename}.csv", cats=cats, ) # convert for each entity da_dict = {} for var in gases: da_dict[var] = ds[var].pr.convert( dim="category (FAO)", conversion=conv[var], ) result = xr.Dataset(da_dict) result.attrs = ds.attrs result.attrs["cat"] = "category (IPCC2006_PRIMAP)" # convert to interchange format and back to get rid of empty categories # TODO there may be a better way to do this result_if = result.pr.to_interchange_format() result = pm2.pm2io.from_interchange_format(result_if) # aggregation for each gas for better understanding # TODO creates some duplicate code, we can combine maybe result_proc = result.pr.add_aggregates_coordinates( agg_info=agg_info_ipcc2006_primap_N2O ) result_proc = result_proc.pr.add_aggregates_coordinates( agg_info=agg_info_ipcc2006_primap_CO2 ) result_proc = result_proc.pr.add_aggregates_coordinates( agg_info=agg_info_ipcc2006_primap_CH4 ) # get processed data output_filename = f"FAOSTAT_Agrifood_system_emissions_{release_name}" output_folder = extracted_data_path / release_name filepath = output_folder / (output_filename + ".nc") ds_original = pm2.open_dataset(filepath) # result_proc_if = result_proc.pr.to_interchange_format() assert ds_original.broadcast_equals(result_proc) # result_proc_if = result_proc.pr.to_interchange_format() # # # # if not output_folder.exists() : # output_folder.mkdir() # # filepath = output_folder / (output_filename + ".csv") # print(f"Writing processed primap2 file to {filepath}") # pm2.pm2io.write_interchange_format( # filepath, # result_proc_if, # ) # # compression = dict(zlib=True, complevel=9) # encoding = {var : compression for var in result_proc.data_vars} # filepath = output_folder / (output_filename + ".nc") # print(f"Writing netcdf file to {filepath}") # result_proc.pr.to_netcdf(filepath, encoding=encoding) def test_read(tmp_path): domains_and_releases_to_read = [ # ("farm_gate_agriculture_energy", "2024-11-14"), # ("farm_gate_emissions_crops", "2024-11-14"), # ("farm_gate_livestock", "2024-11-14"), # ("land_use_drained_organic_soils", "2024-11-14"), ("land_use_fires", "2023-11-09"), # ("land_use_forests", "2024-11-14"), # ("pre_post_agricultural_production", "2024-11-14"), ] read_data( domains_and_releases_to_read=domains_and_releases_to_read, read_path=downloaded_data_path, save_path=tmp_path, ) def test_conversion_from_FAO_to_IPCC2006_PRIMAP(): # make categorisation A from yaml categorisation_a = cc.FAO # make categorisation B from yaml categorisation_b = cc.IPCC2006_PRIMAP # category FAOSTAT not yet part of climate categories, so we need to add it manually cats = { "FAO": categorisation_a, "IPCC2006_PRIMAP": categorisation_b, } # release_name = "v2024-11-14" release_name = "v2023-12-13" # reproduce 2023 data set reproduce23 = True ds_fao = ( extracted_data_path # / "v2024-11-14/FAOSTAT_Agrifood_system_emissions_v2024-11-14_raw.nc" / f"{release_name}/FAOSTAT_Agrifood_system_emissions_{release_name}_raw.nc" ) ds = pm2.open_dataset(ds_fao) # drop UNFCCC data ds = ds.drop_sel(source="UNFCCC") # consistency check in original categorisation ds_checked = ds.pr.add_aggregates_coordinates(agg_info=agg_info_fao) # noqa: F841 # ds_checked_if = ds_checked.pr.to_interchange_format() # We need a conversion CSV file for each entity # That's a temporary workaround until convert function can filter for data variables (entities) conv = {} gases = ["CO2", "CH4", "N2O"] if reproduce23: reproduce23_filename = "_reproduce23" else: reproduce23_filename = "" for var in gases: conv[var] = cc.Conversion.from_csv( f"../../conversion_FAO_IPPCC2006_PRIMAP_{var}{reproduce23_filename}.csv", cats=cats, ) # convert for each entity da_dict = {} for var in gases: da_dict[var] = ds[var].pr.convert( dim="category (FAO)", conversion=conv[var], ) result = xr.Dataset(da_dict) result.attrs = ds.attrs result.attrs["cat"] = "category (IPCC2006_PRIMAP)" # convert to interchange format and back to get rid of empty categories # TODO there may be a better way to do this result_if = result.pr.to_interchange_format() result = pm2.pm2io.from_interchange_format(result_if) # aggregation for each gas for better understanding # TODO creates some duplicate code, we can combine maybe result_proc = result.pr.add_aggregates_coordinates( agg_info=agg_info_ipcc2006_primap_N2O ) result_proc = result_proc.pr.add_aggregates_coordinates( agg_info=agg_info_ipcc2006_primap_CO2 ) result_proc = result_proc.pr.add_aggregates_coordinates( agg_info=agg_info_ipcc2006_primap_CH4 ) result_proc_if = result_proc.pr.to_interchange_format() # save processed data output_filename = f"FAOSTAT_Agrifood_system_emissions_{release_name}" output_folder = extracted_data_path / release_name if not output_folder.exists(): output_folder.mkdir() filepath = output_folder / (output_filename + ".csv") print(f"Writing processed primap2 file to {filepath}") pm2.pm2io.write_interchange_format( filepath, result_proc_if, ) compression = dict(zlib=True, complevel=9) encoding = {var: compression for var in result_proc.data_vars} filepath = output_folder / (output_filename + ".nc") print(f"Writing netcdf file to {filepath}") result_proc.pr.to_netcdf(filepath, encoding=encoding) # def test_read(tmp_path): # domains_and_releases_to_read = [ # # ("farm_gate_agriculture_energy", "2024-11-14"), # # ("farm_gate_emissions_crops", "2024-11-14"), # # ("farm_gate_livestock", "2024-11-14"), # # ("land_use_drained_organic_soils", "2024-11-14"), # ("land_use_fires", "2023-11-09"), # # ("land_use_forests", "2024-11-14"), # # ("pre_post_agricultural_production", "2024-11-14"), # ] # # read_data( # domains_and_releases_to_read=domains_and_releases_to_read, # read_path=downloaded_data_path, # save_path=tmp_path, # ) def test_read_2023(): domains_and_releases_to_read = [ ("farm_gate_agriculture_energy", "2023-12-13"), ("farm_gate_emissions_crops", "2023-11-09"), ("farm_gate_livestock", "2023-11-09"), ("land_use_drained_organic_soils", "2023-11-09"), ("land_use_fires", "2023-11-09"), ("land_use_forests", "2023-11-09"), ("pre_post_agricultural_production", "2023-11-09"), # ("farm_gate_agriculture_energy", "2024-11-14"), # ("farm_gate_emissions_crops", "2024-11-14"), # ("farm_gate_livestock", "2024-11-14"), # ("land_use_drained_organic_soils", "2024-11-14"), # ("land_use_fires", "2024-11-14"), # ("land_use_forests", "2024-11-14"), # ("pre_post_agricultural_production", "2024-11-14"), ] read_data( domains_and_releases_to_read=domains_and_releases_to_read, read_path=downloaded_data_path, save_path=extracted_data_path, ) def test_yaml_to_python(): cat = cc.from_yaml("FAO.yaml") cat.to_python("FAO.py") def test_python_to_yaml(): from FAO import spec cat = cc.from_spec(spec) assert cat def test_fao_categorisation(): # noqa: PLR0912 PLR0915 spec = { "name": "FAOSTAT", "title": ( "Food and Agriculture Organization of the United Nations (FAO) " "FAOSTAT data set categorisation" ), "comment": "Needed to add FAOSTAT data to PRIMAP-hist", "references": "", "institution": "FAO", "hierarchical": True, "last_update": "2024-12-10", "version": "2024", "total_sum": True, "canonical_top_level_category": "0", } categories = {} # 0. main categories categories["0"] = { "title": "Total", "comment": "All emissions and removals", "children": [["1", "2", "3", "4", "5", "6", "7"]], } children_1 = ["1.A", "1.B"] children_2 = ["2.A", "2.B", "2.C", "2.D", "2.E"] children_3 = [f"3.{i}" for i in "ABCDEFGHIJKLMNOPQR"] main_categories = ( # category code, name and comment, gases, children ("1", "Crops", ["CH4", "N2O"], children_1), ( "2", "Energy use in agriculture", ["CH4", "N2O", "CO2"], children_2, ), ("3", "Livestock", ["CH4", "N2O"], children_3), # ("4", "Forest", ["CO2"], children_4), # ( # "5", # "Drained organic soils", # ["N2O", "CO2"], # children_5, # ), # ("6", "Fires", ["CH4", "N2O", "CO2"], children_6), # ( # "7", # "Pre and post agricultural production", # ["CH4", "N2O", "CO2"], # children_7, # ), ) for code, name, gases, children in main_categories: categories[code] = { "title": name, "comment": name, # "alternative_codes": code.replace(".", ""), "children": [children], "info": {"gases": gases}, } # 1. crops # all crops category code_all_crops = "1.A" codes_crops = [f"1.A.{i}" for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]] categories[code_all_crops] = { "title": "All crops", "comment": "All crops", # "alternative_codes": code_all_crops.replace(".", ""), "children": [codes_crops], "info": {"gases": ["CH4", "N2O"]}, } crops = [ "Wheat", "Rice", "Potatoes", "Millet", "Barley", "Maize (corn)", "Sugar cane", "Beans, dry", "Oats", "Rye", "Sorghum", "Soya beans", ] crop_burnings = [ True, True, False, False, False, True, True, False, False, False, False, False, ] rice_cultivations = [ False, True, False, False, False, False, False, False, False, False, False, False, ] for crop, code, crop_burning, rice_cultivation in zip( crops, codes_crops, crop_burnings, rice_cultivations ): # all crops have at least N2O emissions gases_main = "N2O" if crop_burning or rice_cultivation: gases_main = ["CH4", "N2O"] # all crops have at least crop residues as child children_main = [f"{code}.a"] if crop_burning: children_main.append(f"{code}.b") if rice_cultivation: children_main.append(f"{code}.c") categories[f"{code}"] = { "title": f"{crop}", "comment": f"{crop}", # "alternative_codes": [f"{code}".replace(".", "")], "info": {"gases": gases_main}, "children": [children_main], } # crop residues (every crop has it) categories[f"{code}.a.i"] = { "title": f"{crop} crop residues direct emissions", "comment": f"{crop} crop residues direct emissions", # "alternative_codes": [f"{code}.a".replace(".", "")], "info": {"gases": ["N2O"]}, } categories[f"{code}.a.ii"] = { "title": f"{crop} crop residues indirect emissions", "comment": f"{crop} crop residues indirect emissions", # "alternative_codes": [f"{code}.a.i".replace(".", "")], "info": {"gases": ["N2O"]}, } categories[f"{code}.a"] = { "title": f"{crop} crop residues", "comment": f"{crop} crop residues", # "alternative_codes": [f"{code}.a".replace(".", "")], "info": {"gases": ["N2O"]}, "children": [[f"{code}.a.ii", f"{code}.a.i"]], } if crop_burning: categories[f"{code}.b"] = { "title": f"{crop} burning crop residues", "comment": f"{crop} burning crop residues", # "alternative_codes": [f"{code}.b".replace(".", "")], "info": {"gases": ["CH4", "N2O"]}, } if rice_cultivation: categories[f"{code}.c"] = { "title": "Rice cultivation", "comment": "Rice cultivation", # "alternative_codes": [f"{code}.c".replace(".", "")], "info": {"gases": ["CH4"]}, } # synthetic fertilisers codes_synthetic_fertilisers = ["1.B", "1.B.1", "1.B.2", "1.B.2.a", "1.B.2.b"] names = [ "Synthetic fertilisers", "Direct emissions", "Indirect emissions", "Indirect emissions that volatilise", "Indirect emissions that leach", ] children_cats = [["1.B.1", "1.B.2"], None, ["1.B.2.a", "1.B.2.b"], None, None] for code, name, child_cat in zip(codes_synthetic_fertilisers, names, children_cats): categories[code] = { "title": name, "comment": name, # "alternative_codes": [code.replace(".", "")], "info": {"gases": ["N2O"]}, } if child_cat: categories[code]["children"] = [child_cat] # 2. energy use names = [ "Natural gas", "Electricity", "Coal", "Heat", "Petroleum", ] codes = children_2 for name, code in zip(names, codes): categories[code] = { "title": name, "comment": name, # "alternative_codes": code.replace(".", ""), "info": {"gases": ["CH4", "N2O", "CO2"]}, } # 3 livestock animals = [ "Asses", "Camels", "Cattle, dairy", "Cattle, non-dairy", "Chickens, broilers", "Chickens, layers", "Goats", "Horses", "Mules and hinnies", "Sheep", "Llamas", "Chickens", "Poultry Birds", "Buffalo", "Ducks", "Swine, breeding", "Swine, market", "Turkeys", ] codes_animals = [f"3.{i}" for i in "ABCDEFGHIJKLMNOPQR"] enteric_fermentation = [ "Asses", "Camels", "Cattle, dairy", "Cattle, non-dairy", "Goats", "Horses", "Sheep", "Mules and hinnies", "Buffalo", "Swine, breeding", "Swine, market", "Llamas", ] for animal, code in zip(animals, codes_animals): if animal in enteric_fermentation: gases = ["CH4"] animal_children = [f"{code}.{i}" for i in "1234"] categories[f"{code}.4"] = { "title": f"{animal} enteric fermentation", "comment": f"{animal} enteric fermentation", # "alternative_codes" : code.replace(".", ""), "info": {"gases": gases}, } else: gases = ["N2O"] animal_children = [f"{code}.{i}" for i in "123"] categories[code] = { "title": animal, "comment": animal, # "alternative_codes" : code.replace(".", ""), "info": {"gases": gases}, "children": [animal_children], } # manure management branch manure_management_children = [f"{code}.1.{i}" for i in "abc"] categories[f"{code}.1"] = { "title": f"{animal} manure management", "comment": f"{animal} manure management", # "alternative_codes" : code.replace(".", ""), "info": {"gases": gases}, "children": [manure_management_children], } categories[f"{code}.1.a"] = { "title": f"{animal} decomposition of organic matter", "comment": f"{animal} decomposition of organic matter", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "CH4"}, } categories[f"{code}.1.b"] = { "title": f"{animal} manure management (Direct emissions N2O)", "comment": f"{animal} manure management (Direct emissions N2O)", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } categories[f"{code}.1.c"] = { "title": f"{animal} manure management (Indirect emissions N2O)", "comment": f"{animal} manure management (Indirect emissions N2O)", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } # manure left on pasture branch manure_left_on_pasture_children = [f"{code}.2.{i}" for i in "ab"] categories[f"{code}.2"] = { "title": f"{animal} manure left on pasture", "comment": f"{animal} manure left on pasture", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, "children": [manure_left_on_pasture_children], } categories[f"{code}.2.a"] = { "title": f"{animal} manure left on pasture (direct emissions N2O)", "comment": f"{animal} manure left on pasture (direct emissions N2O)", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } categories[f"{code}.2.b"] = { "title": f"{animal} manure left on pasture (indirect emissions N2O)", "comment": f"{animal} manure left on pasture (indirect emissions N2O)", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, "children": [[f"{code}.2.b.i", f"{code}.2.b.ii"]], } categories[f"{code}.2.b.i"] = { "title": ( f"{animal} manure left on pasture " f"(indirect emissions, N2O that leaches)" ), "comment": ( f"{animal} manure left on pasture (indirect " f"emissions, N2O that leaches)" ), # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } categories[f"{code}.2.b.ii"] = { "title": ( f"{animal} manure left on pasture " f"(indirect emissions, N2O that volatilises)" ), "comment": ( f"{animal} manure left on pasture (indirect " f"emissions, N2O that volatilises)" ), # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } # manure applied branch manure_applied_children = [f"{code}.3.{i}" for i in "ab"] categories[f"{code}.3"] = { "title": f"{animal} manure applied", "comment": f"{animal} manure applied", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, "children": [manure_applied_children], } categories[f"{code}.3.a"] = { "title": f"{animal} manure applied (direct emissions N2O)", "comment": f"{animal} manure applied (direct emissions N2O)", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } categories[f"{code}.3.b"] = { "title": f"{animal} manure applied (indirect emissions N2O)", "comment": f"{animal} manure applied (indirect emissions N2O)", # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, "children": [[f"{code}.3.b.i", f"{code}.3.b.ii"]], } categories[f"{code}.3.b.i"] = { "title": ( f"{animal} manure applied " f"(indirect emissions, N2O that leaches)" ), "comment": ( f"{animal} manure applied (indirect " f"emissions, N2O that leaches)" ), # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } categories[f"{code}.3.b.ii"] = { "title": ( f"{animal} manure applied " f"(indirect emissions, N2O that volatilises)" ), "comment": ( f"{animal} manure applied (indirect " f"emissions, N2O that volatilises)" ), # "alternative_codes" : code.replace(".", ""), "info": {"gases": "N2O"}, } # forests categories["4"] = { "title": "Carbon stock change in forests", "comment": "Carbon stock change in forests", "info": {"gases": "CO2"}, "children": [["4.A", "4.B"]], } categories["4.A"] = { "title": "Forest land", "comment": "Forest land", "info": {"gases": "CO2"}, } categories["4.B"] = { "title": "Net Forest conversion", "comment": "Net Forest conversion", "info": {"gases": "CO2"}, } # drained organic soils categories["5"] = { "title": "Drained organic soils", "comment": "Drained organic soils", "info": {"gases": "CO2"}, "children": [["5.A", "5.B"]], } categories["5.A"] = { "title": "Drained grassland", "comment": "Drained grassland", "info": {"gases": ["CO2", "N2O"]}, } categories["5.B"] = { "title": "Drained cropland", "comment": "Drained cropland", "info": {"gases": ["CO2", "N2O"]}, } # 6 Fires # Forest fires forest_fires_children = ["Humid tropical forests", "Other forests"] forest_fires_children_codes = ["6.A.1", "6.A.2"] for cat_name, code in zip(forest_fires_children, forest_fires_children_codes): categories[code] = { "title": cat_name, "comment": cat_name, "info": {"gases": ["CO2", "N2O", "CH4"]}, } categories["6.A"] = { "title": "Forest fires", "comment": "Forest fires", "info": {"gases": ["CO2", "N2O", "CH4"]}, "children": [forest_fires_children_codes], } # Savanna fires savanna_fires_children = [ "Closed shrubland", "Grassland", "Open shrubland", "Savanna", "Woody savanna", ] savanna_fires_children_codes = ["6.B.1", "6.B.2", "6.B.3", "6.B.4", "6.B.5"] for cat_name, code in zip(savanna_fires_children, savanna_fires_children_codes): categories[code] = { "title": cat_name, "comment": cat_name, "info": {"gases": ["CO2", "N2O", "CH4"]}, } categories["6.B"] = { "title": "Savanna fires", "comment": "Savanna fires", "info": {"gases": ["CO2", "N2O", "CH4"]}, "children": [savanna_fires_children_codes], } # fires in organic soils categories["6.C"] = { "title": "Fires in organic soils", "comment": "Fires in organic soils", "info": {"gases": ["CO2", "N2O", "CH4"]}, } # 6 fires categories["6"] = { "title": "Fires", "comment": "Fires", "info": {"gases": ["CO2", "N2O", "CH4"]}, "children": [["6.A", "6.B", "6.C"]], } # 7 pre and post production pre_post_production_categories = [ "Fertilizers Manufacturing", "Food Transport", "Food Retail", "Food Household Consumption", "Solid Food Waste", "Domestic Wastewater", "Industrial Wastewater", "Incineration", "Pre- and Post- Production", "Energy Use (Pre- and Post-Production)", "Agrifood Systems Waste Disposal", "Cold Chain F-Gas", "Pesticides Manufacturing", "Food Processing", "Food Packaging", ] pre_post_production_categories_codes = ["7." + i for i in "ABCDEFGHIJKLMNO"] pre_post_production_categories_gases = [ ["CO2", "N2O", "KYOTOGHG (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)", "FGASES (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)", "FGASES (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)", "FGASES (AR5GWP100)"], ["KYOTOGHG (AR5GWP100)", "CH4"], ["KYOTOGHG (AR5GWP100)", "CH4", "N2O"], ["KYOTOGHG (AR5GWP100)", "CH4", "N2O"], ["CO2", "KYOTOGHG (AR5GWP100)"], # incineration ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)", "FGASES (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)"], ["FGASES (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)", "FGASES (AR5GWP100)"], ["CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)"], ] for cat_name, code, gases in zip( pre_post_production_categories, pre_post_production_categories_codes, pre_post_production_categories_gases, ): categories[code] = { "title": cat_name, "comment": cat_name, "info": {"gases": gases}, } categories["7"] = { "title": "Pre and post agricultural production", "comment": "Pre and post agricultural production", "info": { "gases": [ "CO2", "CH4", "N2O", "KYOTOGHG (AR5GWP100)", "FGASES (AR5GWP100)", ], }, "children": [pre_post_production_categories_codes], } spec["categories"] = categories fao_cats = cc.HierarchicalCategorization.from_spec(spec.copy()) # run print(fao_cats.show_as_tree()) fao_cats.to_python("FAO.py") fao_cats.to_yaml("FAO.yaml")