Преглед изворни кода

feat: store all data in a single parquet file for easy distribution; make CSV compression stable

Mika Pflüger пре 6 месеци
родитељ
комит
a3b797de2d
5 измењених фајлова са 38 додато и 8 уклоњено
  1. 1 1
      .github/workflows/download.yaml
  2. 1 1
      README.md
  3. 27 3
      download.py
  4. 8 2
      howto_new_release.md
  5. 1 1
      requirements.txt

+ 1 - 1
.github/workflows/download.yaml

@@ -48,7 +48,7 @@ jobs:
       - name: update to latest data from gin.hemio.de
         run: datalad -C unfccc_di_data/ update -s ginhemio --how merge
       - name: download data
-        run: datalad -C unfccc_di_data/ rerun download
+        run: datalad -C unfccc_di_data/ run -o data/annexI/*.csv.gz -o data/non-annexI/*.csv.gz -o data/all.parquet python download.py
       - name: publish newly downloaded data
         run: |
           cd unfccc_di_data/

+ 1 - 1
README.md

@@ -19,7 +19,7 @@ References:
 All the data included in this dataset is available from the UNFCCC API, which sources the data from:
 * GHG inventory data: UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data
 * Population data: UNSD Demographic Statistics, available at http://data.un.org
-* GDP data: The World Bank GDP data, available at https://data.worldbank.org/ and shared by The World Bank under the [CC-BY 4.0 License](https://creativecommons.org/licenses/by/4.0/) and pusuant to their [terms of use](https://data.worldbank.org/summary-terms-of-use).
+* GDP data: The World Bank GDP data, available at https://data.worldbank.org/ and shared by The World Bank under the [CC-BY 4.0 License](https://creativecommons.org/licenses/by/4.0/) and pursuant to their [terms of use](https://data.worldbank.org/summary-terms-of-use).
 
 Included is also a python script `download.py` to download the most recent version of the data from the UNFCCC API, which uses the [unfccc-di-api library](https://pypi.org/project/unfccc-di-api/).
 

+ 27 - 3
download.py

@@ -1,14 +1,17 @@
+"""Download the data for all countries from the """
+import pandas as pd
 import tqdm
 import os
 import pathlib
 
 from unfccc_di_api import UNFCCCApiReader
 
-ROOT_DIR = pathlib.Path(os.path.abspath(os.curdir))  # This is your Project Root
+ROOT_DIR = pathlib.Path(os.path.abspath(os.curdir))
 
 
 def main():
     r = UNFCCCApiReader()
+    dfs = []
     for party in tqdm.tqdm(r.parties["code"], desc="parties"):
         df = r.query(party_code=party, progress=False)
 
@@ -16,8 +19,29 @@ def main():
         subdir = "annexI" if annexI else "non-annexI"
         directory = ROOT_DIR / "data" / subdir
         directory.mkdir(parents=True, exist_ok=True)
-        df.to_csv(directory / f"{party}.csv.gz", compression="gzip")
-        df.to_parquet(directory / f"{party}.parquet", compression="brotli")
+        # CSV compressed with gzip is a very widely used standard
+        # pass mtime=0 explicitly so that the creation time is not embedded in the
+        # produced gzip file, which means that the gzip file doesn't change if the
+        # contents haven't changed.
+        df.to_csv(
+            directory / f"{party}.csv.gz",
+            compression={"method": 'gzip', "mtime": 0}
+        )
+        dfs.append(df)
+
+    # Save data for all parties into one big file for easy distribution.
+    # parquet with zstd compression is a very efficient binary format
+    # unfortunately, it embeds the used software versions in the metadata so
+    # generally, the parquet file can change even if the contents haven't changed.
+    # We disable index and statistics which we don't use.
+    df_all = pd.concat(dfs)
+    df_all.to_parquet(
+        ROOT_DIR / "data" / "all.parquet",
+        engine="fastparquet",
+        compression="zstd",
+        index=False,
+        stats=False
+    )
 
 
 if __name__ == "__main__":

+ 8 - 2
howto_new_release.md

@@ -1,4 +1,11 @@
 # How to create a new release
+
+New data is automatically downloaded and added to the dataset every month. While this
+is useful for data archeology in the datalad dataset, an official release on
+zenodo is needed so you can cite the data and third parties can easily re-use the data.
+We therefore aim to make a new release whenever relevant changes happened or at least
+twice a year.
+
 ## 1. download and publish new data
 Go to https://github.com/mikapfl/unfccc_di_data/actions/workflows/download.yaml and
 trigger a new run of the "download" workflow. This will download the latest data from
@@ -43,10 +50,9 @@ datalad push
 datalad push --to origin
 datalad push --to ginhemio --data anything
 datalad export-archive -t zip "data-$(date --iso).zip"
-zip parquet-only.zip data/annexI/*.parquet data/non-annexI/*.parquet
 ```
 
-upload the new data (consisting of the data-{date}.zip and parquet-only.zip files) to
+upload the new data (consisting of the data-{date}.zip and data/all.parquet files) to
 zenodo.
 
 ## 4. start using the new version

+ 1 - 1
requirements.txt

@@ -3,4 +3,4 @@ pandas
 treelib
 tqdm
 requests
-pyarrow
+fastparquet